A New Eighth Order Runge-Kutta Family Method
نویسندگان
چکیده
منابع مشابه
Eighth-order Explicit Symplectic Runge-kutta-nystrr Om Integrators
We consider the solution of Hamiltonian dynamical systems by constructing eighth-order explicit symplectic Runge-Kutta-Nystrr om integrators. The application of high-order integrators may be important in areas such as in astronomy. They require large number of function evaluations, which make them computationally expensive and easily susceptible to errors. The integrators developed in this pape...
متن کاملNonstandard explicit third-order Runge-Kutta method with positivity property
When one solves differential equations, modeling physical phenomena, it is of great importance to take physical constraints into account. More precisely, numerical schemes have to be designed such that discrete solutions satisfy the same constraints as exact solutions. Based on general theory for positivity, with an explicit third-order Runge-Kutta method (we will refer to it as RK3 method) pos...
متن کاملA family of fifth-order Runge-Kutta pairs
The construction of a Runge-Kutta pair of order 5(4) with the minimal number of stages requires the solution of a nonlinear system of 25 order conditions in 27 unknowns. We define a new family of pairs which includes pairs using 6 function evaluations per integration step as well as pairs which additionally use the first function evaluation from the next step. This is achieved by making use of ...
متن کاملA Fourth Order Multirate Runge-Kutta Method with Error Control
To integrate large systems of ordinary differential equations (ODEs) with disparate timescales, we present a multirate method with error control that is based on embedded, explicit Runge-Kutta (RK) formulas. The order of accuracy of such methods depends on interpolating certain solution components with a polynomial of sufficiently high degree. By analyzing the method applied to a simple test eq...
متن کاملAn efficient implicit Runge-Kutta method for second order systems
We will consider the efficient implementation of a fourth order two stage implicit Runge-Kutta method to solve periodic second order initial value problems. To solve the resulting systems, we will use the factorization of the discretized operator. Such proposed factorization involves both complex and real arithmetic. The latter case is considered here. The resulting system will be efficient and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematics Research
سال: 2019
ISSN: 1916-9809,1916-9795
DOI: 10.5539/jmr.v11n2p190